

August- 2014

Review

ISSN 2348-6457

www.ijesrr.org

Email- editor@ijesrr.org

On Locally b-Closed, b-Pre-Open & sb-Generalized Closed Sets In Topological Spaces

Volume-1, Issue-4

Dr. THAKUR C.K. RAMAN

PALLAB KANTI BISWAS

Associate Professor & Head, Deptt. Of Mathematics, Jamshedpur Workers' College, Jamshedpur, Jharkhand. INDIA. Research Scholar [M-654,Mathematics] Kolhan University, Chaibasa, Jharkhand, INDIA.

Abstract:

The present paper contains a discourse on locally b-closed, b-pre-open and s b-generalized closed sets and their connectivity with regular open sets. Also, the equivalence of an open set with a b-open as well as a D(c,b) set is obtained as a part of the paper. The basic properties of these classes of generalized sets have been found a place in this paper.

Keywords: b-open, b-pre-open, locally b-closed, b-semi-open, sb-generalized closed set, t-set, b-t-set, B-set, b-B-set & D(c, b) set.

1. Introduction & Preliminaries:-

The mathematical papers [1,2], produced by D. Andrijevic, introduce and investigate semi-pre-open and b-open sets which are weak forms of open sets. Levine [3] started the study of generalized open sets with the introduction of semi-open sets & Njasted [4] studied α -open sets; Mashour et.al. [5] introduced pre-open sets. At the same time Bourbaki [6] invented the concept of locally closed sets.

Obviously, one of the most significant concepts in topology is the notion of b-open sets which was discussed by E. Ekici & M. Caldas [7] under the name γ -open set. The notions mentioned in [3], [4] & [5] were defined using the closure operator (cl) and the interior operator (int) in the following manner:

Definition (1.1) :

A subset A of a space (X,T) is called

(a) a semi-open [3] set if $A \subset cl(int(A))$ and semi closed set if $int(cl(A)) \subset A$.

(b) a pre-open [5] set if $A \subset int(cl(A))$ and pre-closed set if $cl(int(A)) \subset A$.

(c) an α -open [4] set if $A \subset int(cl(int(A)))$ and α -closed set if $cl(int(cl(A))) \subset A$.

The semi-pre-open set, called by D.Andrijevic [1], was introduced under the name β -open set by M.E. Abd. El-Moneef et.al [7] as:

Definition (1.2):

A subset A of a space (X,T) is called a semi-pre-open [1] or β -open [7] set if A \subset cl(int(cl(A))) and a semi-pre closed or β -closed set if int(cl(int(A))) \subset A

Now, the new class of generalized open sets given by D. Andrijevic under the name of b-open sets is as :

www.ijesrr.org

Volume-1, Issue-4 www.ijesrr.org August- 2014

ISSN 2348-6457 Email- editor@ijesrr.org

Definition (1.3):

A subset A of a space (X,T) is called a b-open set [2] if $A \subset cl(int(A)) \cup int(cl(A))$ and a b-closed set [8] if $cl(int(A)) \cap int(cl(A)) \subset A$.

All the definition (1.1), (1.2) & (1.3) are different and independent [8].

The classes of pre-open, semi-open, α -open, semi-pre-open and b-open subsets of a space (X,T) are usually denoted by PO(X,T), SO(X,T), T^{α}, SPO(X,T) and BO(X,T) respectively. All of them are larger than T and closed under forming arbitrary unions.

In 1996, D. Anderjevic. made the fundamental observation:

Prop. : (1.4): For every space (X, T)

 $PO(X, T) \cup SO(X, T) \subseteq BO(X, T) \subseteq SPO(X,T)$ holds but none of these implications can be reversed [8]

Prop. (1. 5): characterization [8]:

- (a) S is semi-preopen iff $S \subseteq Sint(Scl S)$
- (b) S is semi-open iff $S \subseteq Scl(Sint S)$
- (c) S is pre-open iff $S \subseteq pint(pcl S)$
- (d) S is b-open iff $S \subseteq pcl(pint S)$ where $S \subseteq X$ and (X,T) is a space.

Next, J.Tong [9] introduced the concept of t-set and B-set in a topological space as :

Definition (1.6):

A subset A of a space (X, T) is called

- a) a t-set [9] if int(A) = int(cl(A))
- b) a B-set [9] if $A = U \cap V$ where $U \in T \& V$ is a t-set
- c) Locally closed [6] if $A = U \cap V$ where $U \in T \& V$ is a closed set
- d) Locally b-closed [10] if $A = U \cap V$ where $U \in T \& V$ is a b-closed set

All through this paper (X,T) and $(Y\Box,\sigma)$ stand for topological spaces with no separation axioms assumed unless otherwise stated.

The intersection of all b-closed sets of X containing A is known to be the bcl (A) of A. The union of all b-open sets of X contained in A is known to be b-interior of A and is denoted by bint(A).

2. Locally b-closed & D(c, b) sets :-

This section deals with the theorems related to locally b-closed sets and the concept of a D(c,b) set.

Theorem (2.1): If A is a subset of an extremely disconnected space (X, T), then the following statements are equivalent:

a) A is open

b) A is b-open & locally closed.

Proof: (a) \Rightarrow (b):

Since, every open set is a b-open set; hence A is b-open. Also,

Volume-1, Issue-4	August- 2014	ISSN 2348-6457
www.ijesrr.org		Email- editor@ijesrr.org
$A \cap X = A$, where $A \in \Box T$ & X is	closed, gives that A is loo	cally closed.
$(\mathbf{b}) \Rightarrow (\mathbf{a})$:		
Let A be b-open & locally closed.		

Then, $A \subseteq int(cl(A)) \cup cl(int(A))$ & $A = U \cap cl(A)$ where $U \in T$. [6]

Now, $A \subseteq U \cap [int(cl(A) \cup cl(int(A))]$

 $= U \cup int(cl(A))$ [since, cl(int(A)) \subseteq int(cl(A)) for an extremally disconnected space]

= (intU) \cap int(cl(A)) = int(U \cap cl(A)) = int A

i.e A \subseteq int(A), so that A is open.

Hence the theorem

Definition (2.2): A subset A of a space (X, T) is called D(c,b)-set if int(A) = bint(A). The concepts of bopen and D(c,b) sets are independent as illustrated by the following example:

Example:

Let $X = \{a,b,c\}, T = \{\phi,\{a\},\{a,c\},X\}$, then the simple computation gives that $T_h = BO(X, T)$ $= \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$

And the class of all D(c,b)-sets = { ϕ , {a}, {b}, {c}, {a,c}, {b,c}} Since, $\{a,b\}$ is b-open but not D(c,b)-set and $\{b,c\}$ is a $D\{c,b\}$ -set but not a b-open set. Hence, b-open set & D(c,b)-set are independent.

Theorem (2.3): If $A \subseteq X$ where (X,T) is a space, then [A is open] \Leftrightarrow [A is a b-open set and a D(c,b)set]

Proof:-

Let A be an open set in the space (X,T), then A is also b-open. Again, A = int(A) and A=bint(A), So int(A)=bint(A)Hence, A is a D(c,b) set Conversely, let A be a b-open set as well as a D(c,b) set. So, A=bint(A) & int(A)=bint(A). Hence, A=int(A) which means that A is open.

Theorem (2.4): If H be a subset of (X,T), then H is locally b-closed iff there exists an open set $U \subseteq X$ in the manner that $H=U \cap bcl(H)$.

Proof: Assume that H is a subset of X in a space (X,T). Let H be locally b-closed. Then $H = U \cap F$ where U is open & F is b-closed. This means that $H \subseteq U$ and $H \subseteq F$. Again, $H \subseteq bcl(H) \subseteq bcl(F)=F$.

Volume-1, Issue-4 www.ijesrr.org August- 2014

ISSN 2348-6457 Email- editor@ijesrr.org

Hence, $H \subseteq U \cap bcl(H)$. & Also, $U \cap bcl(H) \subseteq U \cap bcl(F)$ = $U \cap F$

Therefore, $H = U \cap bcl(H)$.

Conversely, assume that $H=U \cap bcl(H)$ where $U \in T$ in the space (X,T).

Since, bcl(H) is b-closed, hence H=U \cap bcl(H)=U \cap V where U \in T &

 $V=bcl(H) \in Bc(X,T)$

This concludes that H is a locally b-closed set.

Theorem (2.5): If A be a locally b-closed subset of a space (X, T), Then (a) bcl (A)-A is a b-closed set (b) $[A \cup (X-bcl(A))]$ is b-open & (c) $A \subseteq \Box$ bint $[A \cup \{X-bcl(A)\}]$.

Proof:

Let A be a locally b-closed subset of a space (X, T).

(a) Using theorem (2.4), there exists an open set U in X such that

 $\mathbf{A} = \mathbf{U} \cap \mathrm{bcl}(\mathbf{A}).$

Now, $bcl(A) - A = bcl(A) - [U \cap bcl(A)]$

- $= bcl(A) \cap [U \cap bcl(A)]^{c}$
- $= bcl(A) \cap [X \{U \cap bcl(A)\}]$
- $= bcl(A) \cap [(X-U) \cup (X-bcl(A)]]$
- $= [bcl(A) \cap (X-U)] \cup [bcl(A) \cup (X-bcl(A))]$
- $= [bcl(A) \cap (X-U)] \cup \phi$
- = bcl(A) \cap (X-U)

= bcl(A) \cap U^C = Intersection of two b-closed sets.

[As U^c is closed & so b-closed]

= A b-closed set

Hence, bcl(A)-A is b-closed.

(b) Since, bcl(A)- A is b-closed, hence [X-(bcl(A) - A)] is b-open.

Now, X-{bcl(A) - A} = X-{bcl(A)
$$\cap A^{c}$$
}

$$= \{X\text{-bcl}(A)\} \cup (X\text{-}A^{c})$$

$$= \{ X - bcl(A) \} \cup A$$

i.e, X-{bcl(A) - A} = A
$$\cup$$
 (X-bcl(A))

 \Rightarrow [A \cup (X-bcl(A)] is b-open.

(c) Naturally, $A \subseteq A \cup (X-bcl(A)) = bint[A \cup \Box (X-bcl(A)]]$

Corollary: The intersection of a locally b-closed set and a locally closed set is locally b-closed.

Volume-1, Issue-4	August- 2014	ISSN 2348-6457
www.ijesrr.org		Email- editor@ijesrr.org

Theorem (2.6): If (X, T) is closed under finite union of b-closed sets and A & B are separated locally b-closed sets, then $A \cup B$ is locally b-closed.

Proof:

Since, A and B are locally b-closed, hence $A = G \cap bcl(A)$ and $B = H \cap bcl(B)$ where G, $H \in T$ and (X,T) is a space.

Let, $U = G \cap (X - cl(B)) \text{ and } V = H \cap (X - cl(A)).$ Then, $U \cap bcl(A) = [G \cap (X - cl(B))] \cap bcl(A)$ $= G \cap [(X - cl(B)) \cap bcl(A)]$ $= G \cap [bcl(A) \cap (X - cl(B))]$ $= A \cap [cl(B)]^{c} = A$

[Since, $A \cap cl(B) = \phi$ because A & B are seperated]

Similarly, $V \cap bcl(B) = B$

Next, $U \cap bcl(B) \subseteq U \cap cl(B)$

$$= [G \cap (X - cl(B)] \cap cl(B)]$$

 $= G \cap \phi = \phi$

Similar, $V \cap bcl(A) = \phi$

Since, U and V are open sets, hence, $U \cup V$ is also an open set.

Now, $(U \cup V) \cap bcl (A \cup B) = (U \cup V) \cap (bcl A \cup bcl B)$

 $= (U \cap bclA) \cup (V \cap bclA) \cup (U \cap bclB) \cup (V \cap bclB)$

$$= \mathbf{A} \cup \mathbf{\phi} \cup \mathbf{\phi} \cup \mathbf{B} = \mathbf{A} \cup \mathbf{B}$$

[Using, the previous results]

Consequently, $A \cup B$ is a locally b-closed set.

Hence, the theorem

3. b-semi-open, b-preopen & sb-generalized closed sets :

This section is the study of the nature of b-semi-open, b-pre-open & sb-generalized closed sets.

Definition (3.1):

A subset A of a space (X,T) is said to be

- (a) a b-semi-open set if A ⊆cl(bint(A) and a b-semi-closed set if int(bcl(A)) ⊆ A.
- (b) a b-pre-open set if $A \subseteq int(bcl(A))$ and a b-pre-closed set if $cl(bint(A)) \subseteq A$.
- (c) a sb-generalized closed set if $sbcl(A) \subseteq U$ whenever $A \subseteq U$ and U is a b-pre-open set. Here sbcl(A) is the intersection of all b-semi-closure sets containing A.

Example:

Let $X = \{a, b, c, d\}, T = \{\phi, X, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$

and $T^{C} = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$

The collection of all sb-generalized closed sets = $P(X) - \{\{c,d\},\{a,c,d\},\{b,c,d\}\}$.

The collection of all sb-generalized open sets = $P(X) - \{\{a\}, \{b\}, \{a, b\}\}$.

Also, BPO(X,T) = T, $BO(X,T) = P(X) - \{\{a\},\{b\},\{a,b\}\} = SBGO(X,T)$

Volume-1, Issue-4	August- 2014	ISSN 2348-6457
www.ijesrr.org		Email- editor@ijesrr.org

Hence, b-pre-open & sb-generalized open sets are independent

Lemma (3.2): If A is an open set of (X,T), then bcl(A) = scl(A) and int (bcl(A)) = int(cl(A))

Proof:

Let A be an open set then A = int(A) Now, bcl (A) = scl(A) \cap pcl(A) = [A \cup [int(cl(A))] \cap [A \cup [cl(int(A))] = A \cup [int(cl(A)) \cap [cl(int(A))] = A \cup [int(cl(A)) \cap [cl(A)] = A \cup int(cl(A)) [Since, int(cl(A)) \subset cl(A)] = scl(A) Again, int(bcl(A)) = int(scl(A)) = int(cl(A))

[since, int(scl(A)) = int(cl(A))]

Corollary: For any open subset A of (X,T),

 $[A \subseteq int(bcl(A))] \Leftrightarrow [A \subseteq int(cl(A))]$

i.e. A is b-preopen \Leftrightarrow A is pre-open.

Theorem (3.3): For a subset A of a space (X,T), the following statements are Equivalent:

- (a) A is regular open
- (b) A = int (bcl(A))
- (c) A is b-preopen and b-t-set.

```
Proof: (a) \Rightarrow (b):
```

Let A be regular open then A = int(cl(A))

By lemma (3.2), int(bcl(A)) = int(cl(A)),

i.e, int(bcl(A)) = A

(b)
$$\Rightarrow \Box$$
(c):

Given A = int(bcl(A))

 $\Rightarrow A \subseteq \Box \operatorname{int}(\operatorname{bcl}(A)) \& \operatorname{int}(\operatorname{bcl}(A)) \subseteq A.$

 \Rightarrow A is b-preopen.

Next,

A = int(bcl(A))

 \Rightarrow int(A) = int {int(bcl(A))}

$$\Rightarrow$$
 int (A) = int(bcl(A))

 \Rightarrow A is b-t-set.

(c) \Rightarrow (a):

Let A be b-preopen as well as b-t-set.

Hence, $A \subseteq \Box$ int(bcl(A)) & int(A) = int(bcl(A))

Then, combining these two, we get

 $A \subseteq \Box int(A) \subseteq \Box A$

 \Rightarrow A = int(A) i.e. A is open & so A is regular open.

Hence, the theorem

Volume-1, Issue-4 www.ijesrr.org August- 2014

ISSN 2348-6457 Email- editor@ijesrr.org

Theorem (3.4): If $A \subseteq X$ where (X, T) is a space,

Then [A is regular open] \Leftrightarrow [A is b-preopen & sb-generalized closed]

Proof:

Let $A \subseteq \Box X$ where (X,T) is a space such that A is a regular open set. Then, by theorem (3.3), A is a b-pre-open set.

This means that $A \subseteq \Box$ int(bcl(A)).

Now, $sbcl(A) = A \cup (int(bcl(A))).$ = int(bcl(A))= int(cl(A)) [lemma(3.2)] = A [Since, A is regular open]

 \Rightarrow A is sb-generalized closed.

Conversely, let A be b-pre-open as well as sb-generalized closed. i.e. sbcl(A)=A

Since, A is b-pre-open as well as sb-generalized and so $A \subseteq \Box A \Rightarrow sbcl(A) \subseteq A$

Whenever $A \subseteq \Box A$. Thus $sbcl(A) \subseteq \Box A$. But $A \subseteq sbcl(A)$ cousequently, A = sbcl(A) which shows that A is b-semi-closed.

Therefore, $int(bcl(A)) \subseteq \Box A$. Again, A, being b-pre-open, gives that $A \subseteq int(bcl(A))$. Combining these facts, A = int(bcl(A)).

Next, A = int(bcl(A)) = int(cl(A)) [lemma (3.2)]

Consequently, A is a regular open set.

Hence, the theorem

Conclusion:

The basic important properties of locally b-closed, b-pre-open and sb-generalized closed sets have been obtained and analyzed. The future scope of study is to obtain results for decomposition of continuity via locally b-closed sets, b-pre-open as well as b-semi-open sets and sb-generalized closed sets in topological spaces.

References:

- 1. D.Andrijevic, Semi-preopen sets, Mat. Vesnik 38(1986), 24-32
- 2. D. Andrijevic, On b-open sets, Mat. Vesnik 48(1996) 59-64
- 3. N.Livine, Semiopen sets and semicontinuity in topological space, Amer. Math. Monthly 70 (1963), 36-41.
- 4. O.Njastad, On some classes of nearly open sets, Pacific J. Math, 15 (1965), 961-970
- A.S. Mashour, M.E. Abd El-Mousef and S.N. el-Deeb, On precontinuous and weak precoutinuous mappings, Proc. Math.Phys. Soc. Egypt 51(1981).
- 6. N.Bourbaki, General Topology Part-I Addison wesley Publ.Co, Reading, Mass, 1966
- 7. E.Ekici and M.Caldas, Slightly γ-continuous functions, Bol.soc.Paran.Mat (35).22(2)(2004), 63-74
- 8. Vidyottama Kumari & Dr. Thakur C.K Ramman, On characterisation of b-opensets intopological spaces, Int. J. of Application or Innovation in Engg. of Management (IJAIEM) Vol.2, Issue 12, Dec. 2013, 229-235.
- 9. J.Tong, Acta Math. Hungar, 54(1-2), 51-55(1989).
- 10. Al-omari, Ahmad & Salmi, Mohd., Noorani Md., Bol. Soc. Paran. Mat. (35) V. 26(1-2), 53-64 (2008)
- Dr. Thakur C.K. Raman & Vidyottama Kumari, Characteristic Behaviour of α- open & β-open sets in topological spaces & their analytical study, Act ciencia Indica, Vol. XXXIX M No. 4, 495(2013).